
Journal of Statistical Physics, VoL 45, Nos. 1/2, 1986 

Tile Spherical-Model Limit in a Random Field 

W. K. Theumann 1 and Jos~ F. Fontanari 2 

Received January 16, 1986, revision received May 2, 1986 

The spherical-model limit n ~ ov of the n-vector model in a random field, with 
either a statistically independent distribution or with long-range correlated ran- 
dom fields, is studied to demonstrate the correctness of the replica method in 
which the n ~ ~ and replica limits limits are interchanged, provided the replica 
and thermodynamic limits are taken in the right order, in the case of long-range 
correlated random fields. A scaling form for the two-point correlation function 
relevant to the first-order phase transition below the lower critical dimen- 
sionality of the random system is also obtained. 

KEY WORDS: n-Vector model; long-range correlated random fields; replica 
method; interchange of replica and spherical-model limits; correlation functions 
for first-order phase transition. 

1. I N T R O D U C T I O N  

There is great current interest in systems with continuous or discrete sym- 
metries in a quenched random field (see Ref. 1 for a recent review), and the 
exactly solvable spherical (or mean spherical) model and the equivalent 
spherical model limit (n ~ oe ) of the n-vector model in a random field have 
received considerable attention in recent works, (2 7) following the original 
work of Lacour-Gayet and Toulouse (s) on the similar ideal Bose-Einstein 
condensation at constant volume. 

Being exactly solvable, these models should enable a direct test on 
statistical procedures that average over a random field, in particular the 
often claimed to be unreliable but popular replica trick (See Ref. 9 for the 
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application of the replica trick to physical systems). It has only recently 
been shown by Perez eta/. (6) that a form of the replica method discussed 
by van Hemmen and Palmer (1~ yields the correct free energy for the mean 
spherical model with a Gaussian distribution of statistically independent 
random fields. 

The explicit calculation of thermodynamic properties by means of the 
replica trick demands, in general, an interchange of the thermodynamic 
and replica limits. The precise mathematical conditions that have to be 
fulfilled in order to justify this interchange and to demonstrate the existence 
of the replica limit are discussed in the work by van Hemmen and 
Palmer. (1~ However, neither of these points has been proved in general. 

The replica method has been used recently by Hornreich and 
Schuster (4) in the n ~ oo limit for the n-vector model (11 13) with a Gaussian 
distribution of statistically independent random fields. Their explicit results 
are obtained through an interchange of the n ~ oo and replica limits. 

The purpose of the present paper is, first, to demonstrate that the 
interchange of the n--* oo and replica limits is correct. We show this by 
extending first the work of Hornreich and Schuster to: (i) statistically 
independent non-Gaussian distributions of random fields and (ii) long- 
range Gaussian correlated random fields that have been used recently for 
finite n by Kardar  eta/. 04) and Chang and Abrahams/15) We contrast the 
results of the replica method with a direct exact calculation that avoids the 
replicas, and we can do this even for long-range Gaussian correlated ran- 
dom fields. Our results for the critical behavior obtained in this case can be 
checked against independent work by Carra and Chalker (7) in the n - ,  
limit of the 1In expansion of Ma, (17) and they do agree. 

The free energy per particle and degree of freedom f(fl),  in which 
fl = 1/kT, for the n --, oo limit of the n-vector model with N particles follows 
a s  

--flf(fl) = lim (Nn) l [ ln Q~)]av (1) 
N , n  ~ o ~  

where [ . . . ] , v  denotes the average over the random field distribution. We 
show here that if the n ~ oo limit is taken before the thermodynamic limit, 
the free energy that is obtained is precisely that of the spherical model. 
Presumably, one may also interchange the limits or take them together, as 
in the case of the nonrandom model, (12) but we do not deal with this issue 
here. 

Making use of the replica method, we write (1~ 

d ln[Q~.m)]a v m =  (2) [In Q~)]av =~mm o 
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which is equivalent to the usual m ~ 0 limit of (Q~,m~_ 1)/m, where Q(~,m) 
is the m-times replicated partition function, with positive integer m. We 
assume, as usual, extension to real m and differentiation at m = 0, here and 
in the following. 

Since one cannot calculate explicitly the right-hand side of Eq. (2) for 
finite N and n, one has to resort to an interchange of limits. Sticking to our 
assumption that the spherical-model limit n ~  oe is taken before the 
N--~ oe limit, we interchange the former with the replica limit and write 

where 

- f l f ( ,8)= lim [d~b(NSM)(m) ] 
N~ co Lam [m =oJ 

(3) 

q~(NSM)(m)--~N - 1  lim n - 1  lnEQ~,m~]av 
n ~ o o  

(4) 

This is the procedure used by Hornreich and Schuster, (4) and to justify the 
steps involved in it, we resort to a replica-independent calculation. 

We are also concerned with the interchange of thermodynamic and 
replica limits, which yields 

d q~(SM)(m ) m=0 -~f(f l)  =~mm 

where 

q~(SM)(m)= lim ~b~M)(m) 
N - - ~  

(5) 

(6) 

A second purpose of this paper is to determine the scaling form of the 
structure factor, in the case of long-range correlated random fields, for the 
first-order phase transition discussed recently by Aharony and Pytte. (16) 
This is an interesting transition that occurs when the variance A of the ran- 
dora field distribution tends to zero and appears when T <  ~ and 

< d <  dc. Here ~ is the critical temperature of the pure system, and 
and d'~ are the lower critical dimensionalities of the pure and random 
systems, respectively. 

The paper is organized as follows. In Section 2 we consider the 
spherical-model limit in the replica method, and in Section 3 we show that 
the same results are obtained in the replica-free calculation. This is done 
only briefly, since the steps one has to follow may be found in the more 
general although abstract work by Pastur. (2~ We present our results on 
correlation functions in Section 4 and a summary with concluding remarks 
in Section 5. 
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2. REPL ICA M E T H O D  IN THE  S P H E R I C A L - M O D E L  L IM IT  

We follow Hornreich and Schuster (4) and consider the n-vector model 
of classical spins S i=  {o-l(/),..., an(i)} on the sites i ( i=  1,..., N) of a regular 
d-dimensional lattice with ]Si[ = r / l /Z ,  for all i, given by the Hamiltonian 

H( m 1 
U i i 

(7) 

with ferromagnetic, translation-invariant, but not necessarily short-ranged 
interaction J~ = Jv o. between spins at sites i and j in a uniform external field 
nl/ZHo along the [1 ..... 1] direction and a quenched random field Hi, with 
components Hiv (v = 1 ..... n). In addition to the Gaussian distribution of 
statistically independent random fields considered in Ref. 4, we take a 
statistically independent non-Gaussian distribution with probability density 

1 
p(Hi~ ) = ~  [6(Hi, -- ho) + 6(H,. + ho)] (8) 

for all i and v, and Gaussian random fields with components 

H,(k)  = N -1/2 ~ Hiv e x p ( - i k '  ri) (9) 
r i  

where k is a vector on reciprocal lattice space and ri is the direct-lattice 
vector to site i, and 

[H~(k)] a~ = 0 (lOa) 

[Hu(k) H,(k ')]av = AS,v 6(k + k') Lo(k) (10b) 

for all v. Here, Lo(k)= k ~ for any small k =  Ikl when 0 >/0 corresponding 
to uncorrelated fields (0 = 0) or short-range oscillatory correlations (0 > 0) 
in direct lattice space. The discrete set of values of Lo(k) in Fourier lattice 
space for 0 < 0, corresponding to long-range correlated random fields in 
direct lattice space, is chosen to reproduce in the thermodynamic limit the 
continuum momentum space behavior of Lo(k) ~ k ~ in the k --* 0 limit used 
by other recent authors (~4'15~ for the finite-n, n-vector model. As will be seen 
below, when the calculations are done with the replica method on a lattice, 
the value of Lo(k) at k - - 0  has to be treated properly. Since the critical 
behavior is determined by the continuum spectrum of Lo(k) for small k 
that follows in the thermodynamic limit, with k oc N -  1, as long as the num- 
ber of sites remains finite, the discrete spectrum of Lo(k) does not lead to a 
divergent Lo(k) at k = 0 and one may choose an appropriate Lo(O). The 
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precise choice is irrelevant, as will be seen below, and we take Lo(O) = const 
< o O .  

We introduce next a set of replicated spin components, {o-~(i)}, 
c~= 1 ..... rn, for each i and v. Although one starts with noninteracting 
replicas, the calculation of the random-field average that defines the effec- 
tive Hamiltonian 

j ~ ( n , m )  = __f l - - I  l n [ e - ~ H ( . I j a  v (11) 

distribution this yields a coupling between replicas. For a Gaussian 
involves 

O,#v 
~B 

which yields 

w~,m~ = _/~-1K { Z (~ 6~ 6.v + K< [H/~Hj&v) ~(i) C(J) 
- (L#v 

+ 2h 2 a:(i)} (13) 
iVCZ 

where K =  fiJ/2 and el = 2/J 2, whereas for the non-Gaussian distribution of 
Eq. (8), 

J~tP~om)G = --fl-lK { 2 voa~(i) a~(j) + 2h ~ a~(i) 
vij,~v ira 

This form includes, in contrast with Eq. (13), higher than quadratic terms 
in the spins, which have to be expanded in order to calculate the partition 
function. Nevertheless, the transformation to new Fourier-transformed 
variables (4) ~ ( p )  such that [~(p)12 = [a~(p)[2, :~ = 1,..., n, with 

~ ( p )  = m -1/2 Y~ o~(p)  (15) 

and that diagonalize the quadratic part of ~(n,m), for Gaussian and non- 
Gaussian distributions in the replica subspace, also serves to eliminate the 
expanded terms for the latter in the replica limit, as will be shown next. 
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We write the random-field average of the replicated partition function 
a s  

[Q~,m){K, 8, h)]av --- z~'ml(K, e, h )/Z~'m)(o, 0, 0) (16) 

where h = Ho/J, 8 is a parameter that depends on the random-field dis- 
tribution, and 

l(~'m)(K, 8, h):ff~i:uQK-~Tiiidt~)exp(KnEi.c~ t~) 

f~176 x [&~(O] 
oO i v  

G. 

xexp{ -K~t~[a : ( i ) ]2 - f l~  { . . . .  }({a:(j)})} (17) 
iv o~ 

which includes the usual representation for the delta function, for each i 
and ~, 

~--~i~iJioodt~/exp ~ [ a ~ ( i ) ] 2 } ) ( 1 8 )  

that accounts for the n-vector model condition. In the limit n ~ oo one may 
do a steepest descent integration in Eq. (17). Actually, the integration in 
the complex plane to calculate [Q~,m)]a v is not crucial and it can be 
avoided using Laplace's method, as in the case of the ordered n-vector 
model. { 1 2  ) 

Insertion of Eq. (14) and the assumption that the In cosh there can 
formally be expanded in a power series yields 

where 

Z~'m)= dt~ exp KnZt~+nlnAm({ti} ) (19) 
- -  i oo  �9 i ,~  

f o o  A,,{t,} = FI [da~(i)] 
- -  oo ic~ 

• a:(j)+2h~a:(i) 

-X r + K82 ~ ~(i) 
iS  " 

x 1--5K%2 a;(i) + ' "  (20) 
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for an arbitrary spin component taken here as v = n, e2 = 2h~/J2, and where 
the dots indicate higher order terms. Equation (15) yields 

F~ ~:(i) =m~F, I-e~(i)] ~ (21) 
i �9 i 

and higher powers in m for higher order terms. 
When the free energy per particle and degree of freedom, 

- f i f ( f l ) =  lim N -~ lira d l i  l ln [Q~. '~ ]~  (22) 

is calculated, the replica limit eliminates these terms and what remains is 
the effect of the quadratic part of ~,~(n.m) ~~ non-G, as in the case of a Gaussian dis- 
tribution. This should be independent of the particular choice of a 
statistically independent non-Gaussian distribution and thus the same 
results should be obtained as for Gaussian distributions, in accordance 
with a comment by Hornreich and Schuster. ~4~ A crucial point here is the 
assumption of replica symmetry, implicit in Eq. (15) and in the existence of 
a single saddle-point parameter t s for all replicas, satisfying the saddle- 
point equation 

K +  lim N l lim m -1 d N . . . .  0 -7-ats l n A m ( t s ) = O  (23) 

We :restrict the following discussion to Gaussian distributions of random 
fields. 

Introducing Fourier lattice components of v~, 

v~= N -1 ~ v(k) e x p [ - i ( r / -  rj). k] (24) 
k 

with finite v(0), one obtains 

Nm Kh z 
x exp (25) 

ts - mKe~ A Lo(O) - v(O) 

For a statistically independent distribution, where Lo(O ) = 1, the order in 
whic]h the thermodynamic and replica limits are taken at this point is 
irrelevant. Thus, as far as the free energy is concerned, one may write 

lim ~ ) ( m ) l , ~ = o  =~mm [ lim ~M~(m)]  1 ~ o  (26) 



106 Theumann and Fontanari 

for a statistically independent distribution of random fields, which leads to 
Eq. (5). In the case of long-range correlated fields, however, that order is 
crucial. Indeed, as pointed out above, Lo(O) is finite only for finite N, 
leading to a well-defined nonzero argument in the exponential of Eq. (25). 
Note that if the thermodynamic limit is taken before the replica limit in the 
calculation of the free energy per particle, the argument of the exponential 
should vanish with Lo(k ) = k-tot __, oo as k --* 0, and this yields the wrong 
result compared to the replica-independent calculation; see below. 

The free energy and the saddle-point equation follow now as 

11 { 
fif(fl) = ~ + ~ In 2 K -  KG + J i n a  (2N)-1 ~ I n [ t , -  v(k)? 

h2 K 
--Ke 1 zJ Lo(k)Ets-v(k)] -~ ts-V(O) (27) 

and 

K =  lira ( 2 N ) - ' ~  { [ q - v ( k ) ]  -1 +Kel A Lo(k)[ ts-v(k)]  2} 
N ~ o o  k 

h2K 
Its- v(o)] 2 (28) 

which generalize the results of Hornreich and Schuster.(4) With 
Lo(k) = k-tot, for 0 < 0, these equations yield in a standard way the dimen- 
sional shift of the thermodynamic properties for short-range interactions, 
with v(k)= v(O)- voa2k 2 for small k, by d ~  d - 2 -  10L, or for long-range 
interactions with v(k) ~ v(O) - voar ~ 0 < a < 2, by d--* d -  a - ]0]. These 
results agree with the recent ones of Ref. 7, obtained in the n --* oo limit of a 
generalization with random fields for the 1/n expansion of Ma. (lv) 

Similarly, other quantities, such as the Edwards-Anderson spin-glass 
order parameter, 

q =  lira N -1 lim lim n 1 ~  E(av~(i))Z]av (29) 
N ~ o o  r n ~ 0  n ~ o o  iv 

in which ( . . . )  denotes the thermodynamic average, are easily obtained 
with the result 

where 

q=/.t2+ lim ( 2 N ) - l e l A ~  Lo(k) 
N~oo [G-- v(k)] 2 

(30) 

= h /E t s -  v(0)] (31) 
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is the normalized magnetization per site. With long-range correlated ran- 
dom fields there is still a nonsingular q for all temperatures T, which 
vanishes only as T ~  0% as in the case of uncorrelated Gaussian random 
fields discussed in Ref. 4. 

3. I ' H E  S P H E R I C A L - M O D E L  L I M I T  W I T H O U T  R E P L I C A S  

The normalized partition function 

Q~(K, {fii~}, h)=Z~)(K, {~e~}, h)/Z~)( O, O, O) (32) 

for the n-vector model in a random field hiv = Hi~/J on site i can be 
obtained in standard way as for an ordered system, without resorting to 
the replica method, doing a steepest descent integration with n --* oo in 

Z(~)( K, {fiiv}, h) 
ff +ii~ ~ii ( ~i dti) e x p  (gn ~i ti) 

; { ?  } x [ I  [day(i)] exp - K  t,[cr~(i)]a-fiH(~({av(j)}) (33) ,so iv 
in which H (~ is the original Hamiltonian given by Eq. (7), in place of the 
effective Hamiltonian in Eq. (11 ). As far as the calculation of Z ~  ) is concer- 
ned, the random field acts as an additional ordering field. As usual in 
systems with quenched disorder, the random-field average is taken on the 
logarithm of Q~), and this yields the free energy per site and degree of 
freedom as 

-f l f( f l)= lim N -I  lim n - l [ l n  Q~(K, {~'~v}, h)]av (34) 
N ~ o o  n ~ o o  

with 

For Z~  ) we obtain 

Z~)(K, {~'iv }, h) = exp{n[KWt s + In A(ts)] } 

f h(k) ,~(- k) //~\N/2 l ~ l n [ t s _ v ( k ) ] + K  t j  2 exp  , 

2KN1/2h~(O) KNh 2 

(35) 

(36) 
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in which ~(k) is the Fourier coefficient of h'i~, with/~(0) =- B(k) at k = 0, and 
t, is given by 

K +  N _  l d ~s  In A(ts)  = 0 (37) 

Taking now the average [In A(t~)]a v in both Eq. (35) and Eq. (37) yields 
the same expression as Eq. (27) for the free energy and 

K + J i m  N 1 d ~ss [ln A ( t s ) ] ,  v = 0 (38) 

gives Eq. (28) for the saddle-point parameter. Note that for a statistically 
independent Gaussian distribution of random fields the result for the free 
energy agrees precisely with Refs. 2 and 6, taking into account the 
relationship between the spherical and mean-spherical models. (13) 

This completes the replica-independent calculation, which enables a 
check on the order in which the limits have to be taken in the case of long- 
range correlated random fields, as discussed in the previous section. 

4. CORRELATION FUNCTIONS 

The work of the previous sections may be extended to the calculation 
of various correlation functions of interest, in particular the net correlation 
functions for spin component c~, (is) 

G~(ri, r j )= [(as(i)  a~ ( j ) ) ] av -  [ ( a ~ ( i ) ) ( a ~ ( j ) ) ] a v  (39) 

C~(ri, r j )= [(O'~(i))(O-~(j))]av-- [(O'~(i))]a v [(O-~(j))]av (40) 

and the correlation function [ (as(i) a s ( j ) ) ]  av that serves to study the first- 
order phase transition that appears below the ordering temperature ~ of 
the nonrandom system when A ~ 0 for ~ < d < de, in which ~ and dc are 
the lower critical dimensionalities for the pure and the random-field 
systems, respectively. 

The calculation of Eqs. (39) and (40) is simplest without replicas, and 
introducing Fourier components 

1 
G~(ri, rj) = ~ ~ G~(k) exp[- - ik. ( r i -  rj)] (41) 

C~(ri, r i ) = 1 ~  Ca(k )exp[ - ik .  ( r i -  rj)] (42) 2u -'~- 
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we find 

and 

G~(k) = (2K) -1 [ t s - v ( k ) ]  -1 (43) 

1 Lo(k) 
C a ( k )  = ~  ~1A r t  s _ v ( k ) ] 2  (44) 

These make it possible to understand the saddle-point equation (28) in 
zero uniform field, which becomes 

lim N -1 ~ [G(k) + C(k)] = 1 (45) 
N~oo  k 

a condition on the sum of the correlation functions at the origin in real-lat- 
tice space, generalizing a well-known result on spherical-like models for a 
nonrandom system. (~3) Note that the right-hand side of Eq. (45) is not the 
free energy density as claimed in Ref. 7. On the other hand, we have 

a~(k) = Aa~(k) Ikl ~ (46) 

in agreement with Carra and Chalker. (7) 
We turn now to our results for the correlation function (191 

[-(0"~(i)  O ' ~ ( j ) ) ] a v  , which is the quantity of interest for the study of the 
first-order phase transition in a random-field problem. It is possible to 
check by means of the spherical-model limit the low-temperature scaling 
assumptions for the relevant ordering fields hiT  and A / T  2 that correspond 
to the magnetization and the Edwards-Anderson order parameter, respec- 
tively, as discussed by Aharony and Pytte, (16) but now for long-range 
correlated random fields. 

For the Fourier components of [(a~(i)a~(j)>]~v we find, in the case 
of Gaussian random fields and short-range interactions taking a spherical 
Brillouin zone of radius g/a,3 

A k ~ 1 1 1 
S ~ ( k , x  1)= j2 (x2+k2)2  ~ fljlc2+k2+voTZ-----~6k,oh2tr 4 (47) 

Here ~c = r is the inverse coherence or persistence length (19) that follows 
from the saddle-point equation in zero field, for fixed T <  ~ ,  the critical 
temperature of the ordered system, with the result 

F/( a 11/(4 0 - -  d ,  

= L 1 - T/T  J A 1/(4 - - 0  --  d) (48) 

3 See Lhe text following Eq. (28). 
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in which 

f (d )  = (1/4)(Ca/vg~Z)(d - 2) ~ c s c [ ( d -  2) ~/2] (49) 

and Ca=2-dTr ~a 4)/2F-l(d/2). When 0 < 0 ,  these become the quantities 
appropriate for long-range correlated random fields. Note that ~ ~ A ~, 
where now v~ = 1/(4 + 101- d) in this case, consistent with a shifted lower 
critical dimensionality of dc = 4 + 10l. Note also that in the spherical-model 
limit used here, these are relationships for any T <  ~ and generalize the 
low-temperature expectations of Aharony and Pytte to long-range 
correlated random fields. There is now a k dependence that corrects the 
Lorentzian squared when 0 < 0 and, since S~(k,  3) is the structure factor, 
this new result may be of use experimentally. 

Equation (47) also yields 

S~(k,  ~) = {dS(k~, T~ 2-a, h~ 2) (50) 

a general form in accordance with Ref. 16, for 0 >~ 0, in which the triple- 
scaling function in zero ordered field h is now given explicitly, for all x and 
y, by 

g ( x , y , O ) = A \ - - - ~ j ( l + x 2 ) 2  1+ A t d, ( l + x a ) x  Oy (51) 

where k B is Boltzmann's constant and 

A(d, T/2C~) =- [1/2f(d) ](1 - T/T~) 

These equations serve to check the general scaling assumption ~ 

[ (o'=(i) o-~(j))]~v =r~{d-2+"a)f(ro./~) (52) 

here also for long-range correlated random fields, where ro---Iri-rj l  and 
r/A = 2 - - d .  

5. S U M M A R Y  OF R E S U L T S  A N D  C O N C L U D I N G  R E M A R K S  

We have shown that the replica limit may be interchanged with the 
limit n --* ~ for the three kinds of random field distributions used in this 
work. In the case of statistically independent random fields, the ther- 
modynamic and replica limits may also be interchanged, but this is not the 
case for long-range Gaussian correlated random fields in the presence of a 
nonzero ordering field. In all cases the correct results are obtained if the 
replica limit is taken before the thermodynamic limit. This is the right order 
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of limits in the general case, except that one cannot perform explicit 
calculations with it. What saves us here from the need to interchange the 
thermodynamic and replica limits is the additional n --* oo limit. 

In all we did here, with or without replicas, the n--* oo limit comes 
before the limit N ~ oe. Presumably these limits can be interchanged, but 
we l~ave no proof for the moment. We remind the reader that already for 
an ordered system the hard part of the proof by Kac and Thompson (12) 
that justifies the interchange of limits is the limit N ~ oo for fixed n, or both 
toge.ther N, n ~ oe. 

We have also shown that the general scaling form for the structure fac- 
tor of the n-vector model for finite n, discussed by Aharony and Pytte, also 
holds for long-range correlated random fields in the spherical-model limit. 
Although only the first two moments of the random-field distribution 
appear in this limit, the results should be quite more general, based on the 
belief that precisely these two moments should determine the behavior of 
the first-order phase transition below T~ when ~ < d <  dc .4 

It is worth noting that the check with the structure factor of Ref. 16 
indicates that the low-temperature scaling of the ordering fields hiT and 
A/T 2 with b a, in which b is the length rescaling factor, based on the loop 
expansion in the nonlinear a-model, (21) may be valid for all fixed T< ~ .  

The results obtained in this work should be useful in carrying out a 
1/n expansion with a random field. 

4 This point should be investigated further; the assumption here is that usually only the first 
two moments  of the appropriate variable are relevant for the critical behavior of random 
systems. See Refs. 14, 15, and 20. 
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